كلية العلوم الاقتصادية والتجارية وعلوم التسيير جامعة باتنة 01 السنة الأولى ماستر -إدارة الموارد البشرية (2025/01/21) الاجابة النموذجية لامتحان الدروة العادية في مقياس النمذجة الاحصائية: (2024–2025)

حل التمرين الأول

$$Y_t=\widehat{b}_0+\widehat{b}_1X_t+arepsilon_t$$
 -1 تقدير معلمات نموذج الانحدار الخطي البسيط النموذج المراد تقديره من الشكل

يمكن تقدير المعلمتين \hat{b}_0 و \hat{b}_1 باستخدام طريقة المربعات الصغرى العادية OLS بالاستعانة بالمجاميع المعطاة في التمرين:

$$\bar{X} = \frac{\sum X_t}{n} = \frac{738}{13} = 61.5$$
 , $\bar{Y} = \frac{\sum Y_t}{n} = \frac{273.6}{13} = 22.8$

$$\bar{X} = \frac{\sum X_t}{n} = \frac{738}{12} = 61.5 , \quad \bar{Y} = \frac{\sum Y_t}{n} = \frac{273.6}{12} = 22.8$$
0.75
$$\hat{b}_1 = \frac{\sum X_t Y_t - n\bar{X}_t \bar{Y}_t}{\sum X_t^2 - n(\bar{X}_t)^2} = \frac{17078.4 - (12*61.5*22.8)}{45654 - 12*61.5^2} = 0.943820$$

$$\hat{b}_0 = \bar{Y}_t - \hat{b}_1 \bar{X}_t = 22.8 - (0.943820*61.5) = -35.244943$$
 0.75 $\hat{Y}_t = -35.244943 + 0.943820 X_t$ 0.75 وعليه يكون النموذج المقدر كما يلي:

$\sigma_{\widehat{b}_1}$ ، $\sigma_{\widehat{b}_0}$ الانحراف المعياري للمعلمات -2

$$\sigma_{\hat{b}_0}^2 = \sigma_{\varepsilon}^2 \left(\frac{1}{n} + \frac{\bar{X}^2}{\sum (X - \bar{X})^2} \right) = \frac{\sum e_t^2}{n - 2} \left(\frac{1}{n} + \frac{\bar{X}^2}{\sum (X - \bar{X})^2} \right) = \frac{175.837303}{12 - 2} \left(\frac{1}{12} + \frac{61.5^2}{267} \right) = 250.551692$$

$$\sigma_{\hat{b}_0}^2 = 250.551693 \Rightarrow \sigma_{\hat{b}_0} = \sqrt{250.551692} = 15.828824$$
0.25

$$\sigma_{\hat{b}_{1}}^{2} = \hat{\sigma}_{\varepsilon}^{2} \frac{1}{\sum (X - \bar{X})^{2}} = \frac{\sum e_{t}^{2}}{n - 2} * \frac{1}{\sum (X - \bar{X})^{2}} = \frac{175.837303}{12 - 2} * \frac{1}{267} = 0,065856$$

$$\sigma_{\hat{b}_{1}}^{2} = 0,065856 \Rightarrow \sigma_{\hat{b}_{1}} = \sqrt{0,065856} = 0.256624$$
0.25

القيام باختبار المعنوبة الإحصائية الفردية للمعلمات

(0.25		
	الفرضيات	$t_{cal\ bi} = \frac{\hat{b}_i - 0}{\sigma_{\hat{b}_i}}$	$t_{tab(10, \frac{5}{2}\%)}$	القرار
بالنسبة ل b ₀	$H_0: b_0 = 0$ $H_1: b_0 \neq 0$	$t_{cal\ b0} = \frac{\hat{b}_0}{\sigma_{\hat{b}_0}} $ $= \frac{-35.244943}{15.828824} = -2.226$	2.228	بما أن $ t_{cal} < t_{tab}^{rac{5}{2}\%}$ بما أن $ t_{cal} < t_{tab}^{rac{5}{2}\%}$ بما أن H_0 والمعلمة H_0 بشكل معنوي (ليس لها دلالة إحصائية)
بالنسبة ل b ₁	$ H_0: b_1 = 0 \\ H_1: b_1 \neq 0 \\ 0.5 $	$t_{cal\ b1} = \frac{\hat{b}_1}{\sigma_{\hat{b}_1}} = \frac{0.943820}{0.256624}$ $0.25 = 3.677$	2.228	بما أن $ t_{cal} > t_{tab}^{\frac{5}{2}\%}$ فإننا نقرر رفض H_0 وقبول H_1 والمعلمة H_1 بشكل معنوي (لها دلالة إحصائية))

4- اختبار إمكانية وجود مشكلة الارتباط الذاتي في الأخطاء من الرتبة الأولى باستخدام اختبار داربن و اتسن $m{DW}$:

 $arepsilon_{ ext{t}} =
ho arepsilon_{ ext{t}-1} + v_t$ نموذج الارتباط الذاتي في الأخطاء من الرتبة الاولى من الشكل:

$$H_0: \rho = 0$$

$$H_1: \rho \neq 0$$
0.25

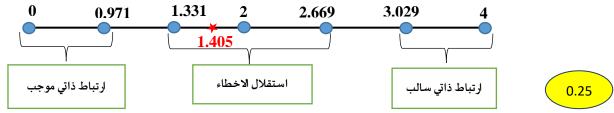
صياغة فرضيات الاختبار:

للكشف عن وجود الارتباط الذاتي في الأخطاء من الرتبة الأولى نستعمل اختبار داربن واتسون، لكنه يشترط مجموعة من الشروط وهي: أ- يستخدم هذا الاختيار لاكتشاف الارتباط الذاتي في الأخطاء من الرتبة الأولى فقط. وهو ما ننشده في هذا السؤال (هذا الشرط محقق) -ب- يجب أن يحتوي النموذج المقدر على معلمة تقاطعية (الحد الثابت-35.244943) ، وهذا الشرط محقق ايضا في النموذج ج- يجب ألا يحتوي الانحدار على المتغير التابع بفجوة زمنية معينة كمتغير تفسيري. وفي حالتنا هذا الشرط محقق.

نلاحظ أن الشروط محققة لذلك يمكن استعمال اختبار داربن و اتسون $m{DW}$ ونحدد كل من DW_{cal} و طرحت:

$$DW_{cal} = \frac{\sum_{t=2}^{n} (e_t - e_{t-1})^2}{\sum_{t=1}^{n} e_t^2} = \frac{247.172224}{175.837303} = 1.405$$

$$DW_{tab\;(n=12,\;\;k=1)}^{5\%} = egin{cases} d_L = 0.971 \ d_U = 1.331 \end{cases}$$
 كما أن قيمة داربن واتسون الجدولية



ب-القرار: نلاحظ أن $DW_{cal}=1.405$ تنتمي إلى مجال استقلال الأخطاء وبالتالي نقرر عدم رفض H_0 والنموذج لا يعاني من مشكلة الارتباط الذاتي في الاخطاء من الرتبة الأولى.

0.5

5- اختبار امكانية وجود مشكلة تعدد الارتباطات الخطية باستعمال اختبار كلاين Klein:

في نماذج الانحدار الخطي البسيط لا تطرح مشكلة تعدد الارتباطات الخطية بين المتغيرات التفسيرية لوجود متغيري تفسيري وحيد

حل التمرين الثاني:

$$(X^tY) = \begin{bmatrix} 80,46 \\ 120,819 \\ 284,815 \end{bmatrix}$$
 $, (X^tX)^{-1} = \begin{bmatrix} 2,833344 & -0,533921 & -0,563793 \\ -0,533921 & 0,254145 & 0,044556 \\ 0,044556 & 0,141303 \end{bmatrix}$ $, (X^tX)^{-1} = \begin{bmatrix} 2,833344 & -0,533921 & -0,563793 \\ -0,563793 & 0,044556 & 0,141303 \end{bmatrix}$ $, (X^tX)^{-1} = \begin{bmatrix} 2,833344 & -0,533921 & -0,563793 \\ -0,533921 & 0,254145 & 0,044556 \\ -0,563793 & 0,044556 & 0,141303 \end{bmatrix}$ $, (X^tX)^{-1} = \begin{bmatrix} 2.886353 \\ 120,819 \\ 284,815 \end{bmatrix} = \begin{bmatrix} 2.886353 \\ 0.436478 \\ 0.265640 \end{bmatrix}$

 $\hat{Y}_t = 2.886353 + 0.436478X_{1t} + 0.26564X_{2t}$

-2 جدول تحليل التباين والمقدرة التفسيرية : 0.25 نقطة لكل قيمة في الجدول اي بمجموع 1.75 نقطة -2

مصدر التغيرات	مجموع المربعات	درجة الحرية	متوسط المربعات
X_i	$SSR = \sum (\hat{Y} - \bar{Y})^2 = 1.017548$	2	$\frac{SSR}{2} = 0.508774$
البواقي	$SSE = \sum (Y - \hat{Y})^2 = \sum e_t^2$ = 0.256279	n - (k+1) = 18 - (2 + 1) = 15	$\frac{SSE}{15} = 0.017085$
الإجمالي	$SST = \sum (Y - \bar{Y})^2 = 1.273827$	n - 1 = 29	

حساب المقدرة التفسيرية للنموذج (باستعمال معامل التحديد المعدل)

$$(\overline{R^2}) = (R^2 A j u s t \acute{e}) = 1 - (1 - R^2) \cdot \frac{n-1}{n - (k+1)} = 1 - \left(1 - \frac{SSR}{SST}\right) \cdot \frac{n-1}{n - (k+1)}$$

$$(\overline{R^2}) = 1 - \left(1 - \frac{1.017548}{1.273827}\right) * \frac{18-1}{18 - (2+1)} = 0.7719 = 77.19\%$$
0.5

أي أن 77.19% من التغيرات في الظاهرة المدروسة Y تفسرها المتغيرات التفسيرية X1,X2 في حين أن النسبة المتبقية أي أن 77.19% من التغيرات في الظاهرة المدروسة Y يمكن ردها إلى متغيرات أخرى لم تدرج في النموذج. (100-77.19=22.81%)

3- الاختبارات المعنوبة الكلية للنموذج عند مستوى معنوية 5%

$$H_0: b_1 = b_2 = 0$$

 $H_1: \exists i / b_i \neq 0 \ ou' \ i = 1, 2$

$$F_{cal}=rac{rac{SSR}{K}}{rac{SSE}{n-(k+1)}}=rac{0.508774}{0.017085}=29.7785$$
 :ثير الاختبار نستعمل احصاءة فيشر F_{cal} ونحدد كل من F_{cal} ونحدد كل من F_{cal} عيث: F_{cal} عيث F_{cal} الاختبار نستعمل احصاءة فيشر الحدولية: $F_{tab}^{0.05}(V_{1=2},\ V_{2=15})=3.68$

2

1.50

القرار: نلاحظ أن H_1 وقبول H_2 وبالتالي النموذج ذو $F_{cal}=29.7785)>(F_{tab}^{0.05}=3.68)$ النموذج ذو دلالة إحصائية ويوجد على الأقل متغير يفسر المتغير Y بشكل معنوي.

الذا يجب student حيث: $t_{cal\ bi} = \frac{\hat{b}_i - 0}{\sigma_{\hat{b}_i}}$ نستخدم إحصاءة الستودنت student حيث: $t_{cal\ bi} = \frac{\hat{b}_i - 0}{\sigma_{\hat{b}_i}}$ نستخدم إحصاءة التبيانات والتغايرات كما يلي : حساب $\sigma_{\hat{b}_i}$

$$var\left(\hat{b}\right) = \hat{\sigma}_{\varepsilon}^{2}(X^{t}X)^{-1} = \frac{\sum e^{2}}{n - (K+1)}(X^{t}X)^{-1} = \begin{bmatrix} 0.048407 & -0.009122 & -0.009632 \\ -0.009122 & 0.004342 & 0.000761 \\ -0.009632 & 0.000761 & 0.002414 \end{bmatrix}$$

$$\begin{split} \sigma_{\hat{b}_0}^2 &= 0.048407 \Rightarrow \sigma_{\hat{b}_0} = \sqrt{0.048407} = 0.220015 \\ \sigma_{\hat{b}_1}^2 &= 0.004342 \Rightarrow \sigma_{\hat{b}_1} = \sqrt{0.004342} = 0.065893 \\ \sigma_{\hat{b}_2}^2 &= 0.002414 \Rightarrow \sigma_{\hat{b}_2} = \sqrt{0.002414} = 0.049132 \end{split}$$

(2.نقطة للجدول أدناه)

	الفرضيات	$t_{cal\;bi}=rac{\widehat{b}_i-0}{\sigma_{\widehat{b}_i}}$	$t_{tab\left(15, \frac{5}{2}\%\right)}$	القرار
بالنسبة د b ₀	$H_0: b_0 = 0$ $H_1: b_0 \neq 0$	$t_{cal\ b0} = \frac{\hat{b}_0}{\sigma_{\hat{b}_0}} = \frac{2.886353}{0.220015} = 13.118$	2.131	بما أن $\frac{5}{200}$ $ t_{cal} > t_{tab}^{200}$ فإننا نقرر رفض بما أن H_1 والمعلمة $(b_0 eq 0)$ بشكل معنوي (لها دلالة إحصائية)
بالنسبة b_1 د	$H_0: b_1 = 0$ $H_1: b_1 \neq 0$	$t_{cal\ b1} = \frac{\hat{b}_1}{\sigma_{\hat{b}_1}} = \frac{0.436478}{0.065893} = 6.623$	2.131	بما أن $t_{cal}^{5\%} t_{cal} > t_{tab}^{2\%}$ فإننا نقرر رفض H_0 وقبول H_1 والمعلمة $h_1 otin (b_1 otin 0)$ بشكل معنوي (لها دلالة إحصائية))
بالنسبة د b ₂	$H_0: b_2 = 0$ $H_1: b_2 \neq 0$	$t_{cal\ b2} = \frac{\hat{b}_2}{\sigma_{\hat{b}_2}} = \frac{0.26564}{0.049132} = 5.406$	2.131	بما أن $rac{t_{cal}}{t_{cal}} >t_{cal}^{5}$ فإننا نقرر رفض H_0 وقبول H_1 والمعلمة H_0 بشكل معنوي (لها دلالة إحصائية)

5-اختبار مشكلة تعدد الارتباطات الخطية باستخدام اختبار فرار جلوبر FARRAR GLAUBER نقطة

الخطوة 1: حساب (r) مصفوفة معاملات الارتباط البسيط ما بين المتغيرات المستقلة. X_2 و X_2 حيث:

الخطوة2: حساب محدد مصفوفة معاملات الارتباط البسيط ما بين المتغيرات المستقلة.

$$Det(r) = |r| = \begin{vmatrix} 1 & -0.2351 \\ -0.2351 & 1 \end{vmatrix} = 0.944727$$

الخطوة3: إجراء ختبار فرار جلوبر F-G الذي يتبع توزيع كاي تربيع x²، وعليه سنختبر الفرضيتين التاليتين:

 H_0 : Det(r) = 1 (les series sont orthogonales) المتغيرات مستقلة

 H_1 : Det(r) < 1 (les series sont dependantes) المتغيرات غير مستقلة

 $k=2\,$ و $n=18\,$ حيث x^2 حيث x^2 و القيمة التجريبية أو المحسوبة لـ فرار جلوبر تتبع توزيع

$$\chi_{cal}^{2} = -\left[n - 1 - \frac{1}{6}[2(k+1) + 5]\right] ln(Det(r)) = -\left[18 - 1 - \frac{1}{6}[2(2+1) + 5]\right] ln(0,944727) = 0.8625$$

$$\chi_{tab\left(df = \frac{1}{2}k(k+1),\alpha\%\right)}^{2} = \chi_{tab\left(df = \frac{1}{2}2(2+1),5\%\right)}^{2} = \chi_{tab(df = 3; 5\%)}^{2} = 7.815$$

بما أن: $\chi^2_{cal} < \chi^2_{tab(df=3\,;\,5\%)}$ فإننا نقرر عدم رفض H_0 وعليه تكون السلاسل مستقلة ولا توجد بذلك مشكلة

تعدد الارتباطات الخطية.

0.25