University of Batna 1 University of Batna 1 Faculty of Economic, Commercial and Management Sciences Department of Finance and Accounting First Year Master's - Specialization: Accounting and Taxation Name and First name:					
May 15, 2025 MODEL ANSWER FOR STATISTICAL SOFTWAR	E EXAM	Du	ration: 1 hou	r 30	
A researcher estimated the relationship between the dependent variable Y and the in software. The regression output is presented in the table below. Based on these result accurately, showing all necessary calculations whe	ndependent var Its, answer the j ere required.	iables X1 following	and X2 using questions clea	Eviews rly and	
 - questions: 1. Nature of the Estimated Model What type of regression model is used here? Answer: The model is a multiple linear regression 2. Equation Specification in Eviews Format Write the Eviews command to estimate this model 	Dependent Variable: Y Method: Least Squares Date: 05/14/25 Time: 22 Sample: 1 30 Included observations: 3	::30 0			
Answer: Y X1 X2 C .	Variable	Coefficient	Std. Error t-Statistic	; Prob.	
3. Mathematical Equation of the Model Write the estimated regression equation using the coefficients from the table Answer: $\hat{Y} = 72.52362 - 0.973126 \cdot X1 + 3.201194 \cdot X2$	X1 X2 C	-0.973126 3.201194 72.52362	1.050827 -0.926058 0.264786 7.928628	0.3626 0.0000 0.0000	
Calculate and fill in the missing t-statistic values for X2 and C. Answer: • t-statistic for X2: $t_{\hat{a}_2} = \frac{\text{Coefficient}}{\text{Std. Errort}} = \frac{3.2011}{0.2647} = 12.08$ • t-statistic for C: $t_{\hat{a}_0} = \frac{\text{Coefficient}}{\text{Std. Errort}} = \frac{72.5236}{7.9286} = 9.15$ 5. State the Coefficient of Determination value and interpret its meaning.	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.917957 0.911879 7.798658 1642.115 -102.6063 154.0471	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Dubin Wickson stat	148.4000 26.27126 7.040420 7.180540 7.085245	
Answer $:R^2 = 0.917957$	F-statistic Prob(F-statistic)	151.04/1 0.000000	Durbin-Watson stat	0.615403	
variable Y is explained by the independent variables X1 and X2 in the m 6. Statistical Significance of Coefficients Test the significance of the coefficients at $\alpha = 0.05$, given $t_{tab} = 2.045$: • For \hat{a}_0 (Intercept): Since Prob. $\approx 0.0000 < 0.05$, we reject H ₀ (null hypothesis: coefficient = • For \hat{a}_1 (Coefficient of X1): Prob. = $0.3626 > 0.05 \Rightarrow$ We fail to reject H ₀ \Rightarrow The coefficient of X1 is 7. Overall Significance of the Model Test the model's overall significance using the F-statistic, given $F_{tab} = 3.32$.	nodel. This in 0). $\Rightarrow \hat{a}_0$ is s not statistica	dicates tatistica lly sign	a very good i ally significar ificant.	ĭt. ıt.	
Answer: $F - statistic = 151.0471 > F_{tab} = 3.32$; Prob(F-statistic null hypothesis that all coefficients are jointly equal to zero \Rightarrow The mode Autocorrelation Test (Durbin-Watson)) = 0.000000 el is statistica	< 0.05 lly sign	; So we rejec ificant overal	t the 1.	
Use the Durbin-Watson statistic to test for autocorrelation, given: dL = 1.28, $dU = 1.57$, $4 - dU = 2.43$, Answer: Since DW $\approx 0.61 < 1.28$, there is evidence of positive autocorrel This violates the classical regression assumption of no autocorrelation. 8. Breusch-Godfrey Autocorrelation Test If the Breusch-Godfrey test results are: • $F - Statistic = 8.75$ • $p - value = 0.003$ What conclusion can you draw? Answer: Since the p-values are < 0.05, we reject the null hypothesis of m \Rightarrow Conclusion: There is evidence of autocorrelation in the model residua • Normality Test (Jarque-Bera) How would you test if the model's residuals follow a normal distribution in Ev	4 - dL = 2.72 lation in the r o autocorrela ls.	2. residuals			
Answer: Click on: View \rightarrow Residual Diagnostics \rightarrow Histogram-Normality Test • If: (Jarque-Bera) p-value $> 0.05 \Rightarrow$ Fail to reject H ₀ \Rightarrow Residuals are normally distributed.					

What is the primary purpose of calculating Variance Inflation Factors (VIF) in regression analysis?	Variance Inflation Factors Date: 05/14/25 Time: 23:43 Sample: 1 30
 Answer : calculating (VIF) is to detect multicollinearity 9. Based on the VIF results below, interpret the findings: 	Coefficient Uncentered Centered Variable Variance VIF VIF
Answer : VIF $< 5 \Rightarrow$ There is no severe multicollinearity between X1 and X2	X1 1.104237 69.02951 2.321561 X2 0.070111 27.65768 2.321561 C 62.86314 31.00827 NA
Answer : calculating (VIF) is to detect multicollinearity 9. Based on the VIF results below, interpret the findings: Answer : VIF < 5⇒ There is no severe multicollinearity between X1 and X2 10. The Dickey-Fuller test was applied to a time series, and the results are shown in the table below. Do the results indicate that the time series is: Stationary. homogeneous independent Normality Heteroscedasticity 12. What are the steps involved in using Eviews soft (Put the mark (X) in the correct suggestion) File / Unit Root Tests / Standard Unit Root Test / Augmente View / Residuel Diagnostic / Heteroskedasticity Test / Breus	A produced observations: 30 Included observations: 30 Variable Variance VIF Centered VIF VIF X1 1.104237 69.02951 2.321561 X2 0.070111 27.65768 2.321561 C 62.86314 31.00827 NA NAULI Hypothesis: Y has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=1) K-Statistic Prob.* Augmented Dickey-Fuller test statistic -1.066613 0.6777 Test critical values: 1% level -4.420595 5.5% level -3.259808 10% level -2.771129 National Context Statistic -1.066613 0.6777 Test critical values: 1% level -4.420595 5.5% level -3.259808 10% level -2.771129 National Context Statistic - 1.066613 0.6777 Test critical values: 1% level -3.259808 10% level -2.771129 National Context Statistic - 1.066613 0.6777 Test critical values: 1% level -3.259808 10% level -2.771129 National Context Statistic - 1.066613 0.6777 Test critical values: 1% level -3.259808 10% level -2.771129 National Context Statistic - 1.066613 0.6777 Test critical values: 1% level -3.259808 10% level -2.771129 National Context Statistic - 1.066613 0.6777 Context Statistic - 1.066613 0.6777 Test critical values: 1% level -3.259808 10% level -2.771129 National Context Statistic - 1.066613 0.6777 Context Statistic -
 X View / Unit Root Tests / Standard Unit Root Test / Augment 13. If the researcher wants to study the stationarity of (Put the mark (✓) i Durbin-Watson test Breusch-Godfrey test Augmented Dickey-Fuller test 14. the researcher tested the existence of the unit root. What method do you suggest to him in order to on Eviews? (Put the mark (✓) in the correct standard Unit Root Tests/Standard Unit Root Test/Augmented Dickey-Fuller 15. File/Unit Root Tests/Standard Unit Root Test/Augmented Dickey-Fuller 17. After the researcher found that the time series be after first differencing, what are the proposed mode corresponding correlogram? ARIMA(1,1,1), ARIMA(1,1,0), ARIMA(0,1,1)	Term Dickey-FullerDate: 05/04/25 Time: 13:45Sample (adjusted): 200002 201002Included observations: 39 after adjustmentsAutocorrelationAC PAC Q-Stat ProbIncluded observations: 39 after adjustmentsAutocorrelationAutocorrelationAC PAC Q-Stat ProbIncluded observations: 39 after adjustmentsAutocorrelationAutocorrelationAC PAC Q-Stat ProbIncluded observations: 39 after adjustmentsAutocorrelationAutocorrelationAutocorrelationAutocorrelationAutocorrelationAutocorrelationAutocorrelationAutocorrelationAutocorrelationAutocorrelationAutocorrelationAutocorrelationAutocorrelationAutocorrelationAutocorrelationAutocorrelation </th